BAIT

CDC28

CDK1, HSL5, SRM5, cyclin-dependent serine/threonine-protein kinase CDC28, L000000267, YBR160W
Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1 (CLNs), S and G2/M (CLBs) phase cyclins, which provide substrate specificity; regulates cell cycle and basal transcription, chromosome duplication and segregation, lipid biosynthesis, membrane trafficking, polarized growth, and morphogenesis; abundance increases in DNA replication stress; transcript induction in osmostress involves antisense RNA
GO Process (24)
GO Function (5)
GO Component (8)
Saccharomyces cerevisiae (S288c)
PREY

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Biochemical Activity (Phosphorylation)

An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.

Publication

Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression.

Simoneau A, Robellet X, Ladouceur AM, D'Amours D

Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways ensuring the repair of DNA double-stranded breaks (DSBs) in eukaryotes. It has long been known that cell cycle stage is a major determinant of the type of pathway used to repair DSBs in vivo. However, the mechanistic basis for the cell cycle regulation of the DNA damage response ... [more]

Cell Cycle Feb. 21, 2014; 13(7);1078-90 [Pubmed: 24553123]

Throughput

  • Low Throughput

Additional Notes

  • Cdc28-Clb2
  • Figure 3

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MRE11 CDC28
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1963BioGRID
2063008
CDC28 MRE11
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
353041
MRE11 CDC28
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
157073
CDC28 MRE11
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
195051

Curated By

  • BioGRID