BAIT

DUN1

serine/threonine protein kinase DUN1, L000000531, YDL101C
Cell-cycle checkpoint serine-threonine kinase; required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage; Mec1p and Dun1p function in same pathway to regulate both dNTP pools and telomere length; also regulates postreplicative DNA repair
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

RAD5

REV2, SNM2, DNA helicase RAD5, L000001559, YLR032W
DNA helicase/Ubiquitin ligase; involved in error-free branch of DNA damage tolerance (DDT) pathway; proposed to promote replication fork regression during postreplication repair by template switching; stimulates synthesis of free and PCNA-bound polyubiquitin chains by Ubc13p-Mms2p; required for error-prone translesion synthesis; forms nuclear foci upon DNA replication stress; associates with native telomeres, cooperates with homologous recombination in senescent cells
Saccharomyces cerevisiae (S288c)

Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Publication

Posttranscriptional regulation of the RAD5 DNA repair gene by the Dun1 kinase and the Pan2-Pan3 poly(A)-nuclease complex contributes to survival of replication blocks.

Hammet A, Pike BL, Heierhorst J

The yeast Dun1 kinase has complex checkpoint functions including DNA damage-dependent cell cycle arrest in G(2)/M, transcriptional induction of repair genes, and regulation of postreplicative DNA repair pathways. Here we report that the Dun1 forkhead-associated domain interacts with the Pan3 subunit of the poly(A)-nuclease complex and that dun1pan2 and dun1pan3 double mutants are dramatically hypersensitive to replicational stress. This phenotype ... [more]

J. Biol. Chem. Jun. 21, 2002; 277(25);22469-74 [Pubmed: 11953437]

Throughput

  • Low Throughput

Ontology Terms

  • inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DUN1 RAD5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.63BioGRID
2356223
RAD5 DUN1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
349814
DUN1 RAD5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
452897
RAD5 DUN1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457063

Curated By

  • BioGRID