TOR2
Gene Ontology Biological Process
- TOR signaling [IC, IMP]
- actin filament reorganization involved in cell cycle [TAS]
- cytoskeleton organization [IMP]
- establishment or maintenance of actin cytoskeleton polarity [IMP]
- negative regulation of autophagy [IGI]
- positive regulation of Rho guanyl-nucleotide exchange factor activity [IGI, IMP]
- positive regulation of Rho protein signal transduction [IGI, IMP]
- positive regulation of endocytosis [IMP]
- regulation of cell cycle [TAS]
- regulation of cell growth [TAS]
- ribosome biogenesis [IMP]
- signal transduction [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CCT6
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
TOR2 is required for organization of the actin cytoskeleton in yeast.
The Saccharomyces cerevisiae gene TOR2 encodes a putative phosphatidylinositol kinase that has two essential functions. One function is redundant with TOR1, a TOR2 homolog, and is required for signaling translation initiation and early G1 progression. The second essential function is unique to TOR2. Here we report that loss of the TOR2-unique function disrupts polarized distribution of the actin cytoskeleton. A ... [more]
Throughput
- Low Throughput
Ontology Terms
- actin cytoskeleton morphology (APO:0000120)
- viability (APO:0000111)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TOR2 CCT6 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 164664 | |
TOR2 CCT6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3017 | BioGRID | 1941926 |
Curated By
- BioGRID