TOR2
Gene Ontology Biological Process
- TOR signaling [IC, IMP]
- actin filament reorganization involved in cell cycle [TAS]
- cytoskeleton organization [IMP]
- establishment or maintenance of actin cytoskeleton polarity [IMP]
- negative regulation of autophagy [IGI]
- positive regulation of Rho guanyl-nucleotide exchange factor activity [IGI, IMP]
- positive regulation of Rho protein signal transduction [IGI, IMP]
- positive regulation of endocytosis [IMP]
- regulation of cell cycle [TAS]
- regulation of cell growth [TAS]
- ribosome biogenesis [IMP]
- signal transduction [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MSS4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae.
The Saccharomyces cerevisiae genes TOR1 and TOR2 encode phosphatidylinositol kinase homologs. TOR2 has two essential functions. One function overlaps with TOR1 and mediates protein synthesis and cell cycle progression. The second essential function of TOR2 is unique to TOR2 and mediates the cell-cycle-dependent organization of the actin cytoskeleton. We have isolated temperature-sensitive mutants that are defective for either one or ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: heat sensitivity (APO:0000147)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TOR2 MSS4 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 426974 | |
MSS4 TOR2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5127 | BioGRID | 1926420 | |
TOR2 MSS4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4218 | BioGRID | 1941927 |
Curated By
- BioGRID