BAIT

SNF3

L000001946, YDL194W
Plasma membrane low glucose sensor, regulates glucose transport; contains 12 predicted transmembrane segments and a long C-terminal tail required for induction of hexose transporters; also senses fructose and mannose; SNF3 has a paralog, RGT2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae.

Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Woelfl S, Almonte C, Watkins SC

The Std1 protein modulates the expression of glucose-regulated genes, but its exact molecular role in this process is unclear. A two-hybrid screen for Std1-interacting proteins identified the hydrophilic C-terminal domains of the glucose sensors, Snf3 and Rgt2. The homologue of Std1, Mth1, behaves differently from Std1 in this assay by interacting with Snf3 but not Rgt2. Genetic interactions between STD1, ... [more]

Mol. Cell. Biol. Jul. 01, 1999; 19(7);4561-71 [Pubmed: 10373505]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: utilization of carbon source (APO:0000098)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTG2 SNF3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.5571BioGRID
515465
RTG2 SNF3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.258BioGRID
214186

Curated By

  • BioGRID