APN2
Gene Ontology Biological Process
Gene Ontology Molecular Function
RAD52
Gene Ontology Biological Process
- DNA amplification [IMP]
- DNA recombinase assembly [IDA]
- DNA strand renaturation [IDA]
- double-strand break repair via break-induced replication [IMP]
- double-strand break repair via homologous recombination [IMP]
- double-strand break repair via single-strand annealing [IGI]
- meiotic joint molecule formation [IGI, IMP]
- postreplication repair [IMP]
- telomere maintenance via recombination [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases.
In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3'-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3' phosphatase domain of polynucleotide kinase, is a third member of ... [more]
Throughput
- Low Throughput
Ontology Terms
- inviable (APO:0000112)
Additional Notes
- in tpp1 apn1 apn2 rad52 background
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| APN2 RAD52 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 3849393 | |
| APN2 RAD52 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 3849395 |
Curated By
- BioGRID