SLT2
Gene Ontology Biological Process
- UFP-specific transcription factor mRNA processing involved in endoplasmic reticulum unfolded protein response [IMP]
- barrier septum assembly [IGI]
- endoplasmic reticulum unfolded protein response [IDA, IMP]
- fungal-type cell wall biogenesis [IGI]
- peroxisome degradation [IMP]
- protein phosphorylation [IDA, IMP]
- regulation of cell size [IMP]
- regulation of fungal-type cell wall organization [IGI, IMP]
- regulation of transcription factor import into nucleus [IMP]
- response to acidic pH [IMP]
- signal transduction [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CLN2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator.
The protein kinase C of Saccharomyces cerevisiae, Pkc1, regulates a MAP kinase, Mpk1, whose activity is stimulated at the G1-S transition of the cell cycle and by perturbations to the cell surface, e.g. induced by heat shock. The activity of the Pkc1 pathway is partially dependent on Cdc28 activity. Swi4 activates transcription of many genes at the G1-S transition, including ... [more]
Throughput
- Low Throughput
Ontology Terms
- inviable (APO:0000112)
Additional Notes
- cln1/cln2/mpk1 triple mutants are lethal
- genetic complex
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| CLN2 SLT2 | Positive Genetic Positive Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores. | High | 0.1171 | BioGRID | 2434611 |
Curated By
- BioGRID