BAIT

MYO3

myosin 3, L000002889, YKL129C
One of two type I myosins; localizes to actin cortical patches; deletion of MYO3 has little effect on growth, but myo3 myo5 double deletion causes severe defects in growth and actin cytoskeleton organization; MYO3 has a paralog, MYO5, that arose from the whole genome duplication
GO Process (6)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

MYO5

myosin 5, L000002935, YMR109W
One of two type I myosin motors; contains proline-rich tail homology 2 (TH2) and SH3 domains; MYO5 deletion has little effect on growth, but myo3 myo5 double deletion causes severe defects in growth and actin cytoskeleton organization; MYO5 has a paralog, MYO3, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton.

Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA

The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes ... [more]

J. Cell Biol. Jun. 01, 1996; 133(6);1277-91 [Pubmed: 8682864]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MYO5 MYO3
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
MYO3 MYO5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-15.7518BioGRID
515993
MYO3 MYO5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3717BioGRID
2143867
MYO5 MYO3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.9356BioGRID
2162669
MYO3 MYO5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-30.3825BioGRID
895969
MYO5 MYO3
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
269039
MYO3 MYO5
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3400068
MYO3 MYO5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
561768
MYO3 MYO5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
196309
MYO3 MYO5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
426641
MYO3 MYO5
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158343
MYO3 MYO5
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158345
MYO5 MYO3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
429318
MYO3 MYO5
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

High-BioGRID
-
MYO3 MYO5
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

High-BioGRID
-

Curated By

  • BioGRID