BAIT

CDC40

PRP17, SLT15, SLU4, L000000275, L000001921, YDR364C
Pre-mRNA splicing factor; important for catalytic step II of pre-mRNA splicing and plays a role in cell cycle progression; required for DNA synthesis during mitosis and meiosis; has WD repeats
Saccharomyces cerevisiae (S288c)
PREY

CLF1

NTC77, SYF3, L000004628, YLR117C
Member of the NineTeen Complex (NTC); this complex contains Prp19p and stabilizes U6 snRNA in catalytic forms of the spliceosome containing U2, U5, and U6 snRNAs; homolog of Drosophila crooked neck protein; interacts with U1 snRNP proteins
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae.

Ben-Yehuda S, Dix I, Russell CS, McGarvey M, Beggs JD, Kupiec M

The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here we describe the identification of nine genes that, when ... [more]

Genetics Dec. 01, 2000; 156(4);1503-17 [Pubmed: 11102353]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CLF1 CDC40
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
157108
CDC40 CLF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163544

Curated By

  • BioGRID