BAIT

RTF1

CSL3, L000001782, YGL244W
Subunit of RNAPII-associated chromatin remodeling Paf1 complex; regulates gene expression by directing cotranscriptional histone modification, influences transcription and chromatin structure through several independent functional domains; directly or indirectly regulates DNA-binding properties of Spt15p and relative activities of different TATA elements; involved in transcription elongation as demonstrated by the G-less-based run-on (GLRO) assay
GO Process (19)
GO Function (3)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

KIN28

TFIIH complex serine/threonine-protein kinase subunit KIN28, L000000905, YDL108W
Serine/threonine protein kinase, subunit of transcription factor TFIIH; involved in transcription initiation at RNA polymerase II promoters; phosphorylates Ser5 residue of the PolII C-terminal domain (CTD) at gene promoters; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation.

Costa PJ, Arndt KM

Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same ... [more]

Genetics Oct. 01, 2000; 156(2);535-47 [Pubmed: 11014804]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTF1 KIN28
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1903BioGRID
2044254

Curated By

  • BioGRID