BAIT
SIT4
PPH1, type 2A-related serine/threonine-protein phosphatase SIT4, L000001901, YDL047W
Type 2A-related serine-threonine phosphatase; functions in the G1/S transition of the mitotic cycle; regulator of COPII coat dephosphorylation; required for ER to Golgi traffic; interacts with Hrr25p kinase; cytoplasmic and nuclear protein that modulates functions mediated by Pkc1p including cell wall and actin cytoskeleton organization; similar to human PP6
GO Process (10)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
- DNA repair [IMP]
- G1/S transition of mitotic cell cycle [IGI]
- TOR signaling [IMP]
- actin cytoskeleton organization [IMP]
- cellular response to oxidative stress [IMP]
- dephosphorylation [IMP]
- fungal-type cell wall organization [IMP]
- intracellular signal transduction [IMP]
- replicative cell aging [IMP]
- tRNA wobble uridine modification [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
CDC34
DNA6, UBC3, SCF E2 ubiquitin-protein ligase catalytic subunit CDC34, L000000271, YDR054C
Ubiquitin-conjugating enzyme (E2); catalytic subunit of SCF ubiquitin-protein ligase complex (together with Skp1p, Rbx1p, Cdc53p, and an F-box protein) that regulates cell cycle progression by targeting key substrates for degradation; protein abundance increases in response to DNA replication stress
GO Process (6)
GO Function (3)
GO Component (3)
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [TAS]
- G2/M transition of mitotic cell cycle [IGI]
- SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [IDA]
- protein autoubiquitination [IDA, IMP]
- protein polyubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system.
Using a synthetic lethality screen we found that the Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Yeast cells harboring sit4 mutations and an impaired proteasome (due to pre1-1 pre4-1 mutations) exhibited defective growth on minimal medium. Nearly identical synthetic effects were found when sit4 mutations were combined with defects of the Rad6/Ubc2- and Cdc34/Ubc3-dependent ubiquitination pathways. Under synthetic ... [more]
Genetics Aug. 01, 2003; 164(4);1305-21 [Pubmed: 12930741]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID