TPM1
Gene Ontology Biological Process
- actin filament bundle assembly [IGI]
- actin filament organization [TAS]
- actin filament reorganization [IMP]
- actin polymerization or depolymerization [TAS]
- budding cell apical bud growth [TAS]
- budding cell isotropic bud growth [TAS]
- establishment of cell polarity [TAS]
- exocytosis [TAS]
- filamentous growth [IMP]
- intracellular mRNA localization [TAS]
- mitochondrion inheritance [TAS]
- pseudohyphal growth [IMP]
- vacuole inheritance [TAS]
- vesicle-mediated transport [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SLT2
Gene Ontology Biological Process
- UFP-specific transcription factor mRNA processing involved in endoplasmic reticulum unfolded protein response [IMP]
- barrier septum assembly [IGI]
- endoplasmic reticulum unfolded protein response [IDA, IMP]
- fungal-type cell wall biogenesis [IGI]
- peroxisome degradation [IMP]
- protein phosphorylation [IDA, IMP]
- regulation of cell size [IMP]
- regulation of fungal-type cell wall organization [IGI, IMP]
- regulation of transcription factor import into nucleus [IMP]
- response to acidic pH [IMP]
- signal transduction [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Mutations synthetically lethal with tpm1delta lie in genes involved in morphogenesis.
Yeast contains two genes, TPM1 and TPM2, encoding tropomyosins, either of which can provide an essential function in the yeast cytoskeleton. To elucidate more clearly the function of the major tropomyosin, encoded by TPM1, we have isolated mutations that confer synthetic lethality with the null mutant of TPM1. Here we describe a phenotypic and genetic analysis of mutations in TSL1/BEM2, ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SLT2 TPM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -10.6401 | BioGRID | 514988 | |
SLT2 TPM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3241 | BioGRID | 385240 | |
TPM1 SLT2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4971 | BioGRID | 2168410 | |
SLT2 TPM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4839 | BioGRID | 2125936 | |
SLT2 TPM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.324 | BioGRID | 909977 | |
SLT2 TPM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -15.32 | BioGRID | 2355133 | |
SLT2 TPM1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 109441 |
Curated By
- BioGRID