BAIT

TPM1

tropomyosin TPM1, L000002328, YNL079C
Major isoform of tropomyosin; binds to and stabilizes actin cables and filaments, which direct polarized cell growth and the distribution of several organelles; acetylated by the NatB complex and acetylated form binds actin most efficiently; TPM1 has a paralog, TPM2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

SLT2

BYC2, LYT2, MPK1, SLK2, mitogen-activated serine/threonine-protein kinase SLT2, L000001919, YHR030C
Serine/threonine MAP kinase; involved in regulating maintenance of cell wall integrity, cell cycle progression, and nuclear mRNA retention in heat shock; required for mitophagy and pexophagy; affects recruitment of mitochondria to phagophore assembly site (PAS); plays a role in adaptive response of cells to cold; regulated by the PKC1-mediated signaling pathway; SLT2 has a paralog, KDX1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Mutations synthetically lethal with tpm1delta lie in genes involved in morphogenesis.

Wang T, Bretscher A

Yeast contains two genes, TPM1 and TPM2, encoding tropomyosins, either of which can provide an essential function in the yeast cytoskeleton. To elucidate more clearly the function of the major tropomyosin, encoded by TPM1, we have isolated mutations that confer synthetic lethality with the null mutant of TPM1. Here we describe a phenotypic and genetic analysis of mutations in TSL1/BEM2, ... [more]

Genetics Dec. 01, 1997; 147(4);1595-607 [Pubmed: 9409824]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SLT2 TPM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.6401BioGRID
514988
SLT2 TPM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3241BioGRID
385240
TPM1 SLT2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4971BioGRID
2168410
SLT2 TPM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4839BioGRID
2125936
SLT2 TPM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.324BioGRID
909977
SLT2 TPM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-15.32BioGRID
2355133
SLT2 TPM1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
109441

Curated By

  • BioGRID