BAIT

NBP2

L000002861, YDR162C
Protein involved in the HOG (high osmolarity glycerol) pathway; negatively regulates Hog1p by recruitment of phosphatase Ptc1p the Pbs2p-Hog1p complex; interacts with Bck1p and down regulates the cell wall integrity pathway; found in the nucleus and cytoplasm, contains an SH3 domain and a Ptc1p binding domain (PBM)
Saccharomyces cerevisiae (S288c)
PREY

HOG1

SSK3, mitogen-activated protein kinase HOG1, L000000797, YLR113W
Mitogen-activated protein kinase involved in osmoregulation; controls global reallocation of RNAPII in osmotic shock; activates CDC28 by stimulating antisense RNA transcription; mediates recruitment/activation of RNAPII at Hot1p-dependent promoters; with Mrc1p defines novel S-phase checkpoint that prevent conflicts between DNA replication and transcription; nuclear form represses pseudohyphal growth; autophosphorylates; protein abundance increases under DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway.

Mapes J, Ota IM

The yeast high osmolarity glycerol (HOG) pathway signals via the Pbs2 MEK and the Hog1 MAPK, whose activity requires phosphorylation of Thr and Tyr in the activation loop. The Ptc1-type 2C Ser/Thr phosphatase (PP2C) inactivates Hog1 by dephosphorylating phospho-Thr, while the Ptp2 and Ptp3 protein tyrosine phosphatases dephosphorylate phospho-Tyr. In this work, we show that the SH3 domain-containing protein Nbp2 ... [more]

EMBO J. Jan. 28, 2004; 23(2);302-11 [Pubmed: 14685261]

Throughput

  • Low Throughput

Ontology Terms

  • vegetative growth (APO:0000106)

Additional Notes

  • HOG1 deletion rescues growth defect seen in nbp2 ptp2 double mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
NBP2 HOG1
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

High-BioGRID
486063
NBP2 HOG1
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High3.15BioGRID
2356917

Curated By

  • BioGRID