SEC14
Gene Ontology Biological Process
- Golgi to plasma membrane protein transport [IMP]
- Golgi to vacuole transport [IGI, IMP]
- Golgi vesicle budding [IDA]
- ascospore formation [IMP]
- negative regulation of phosphatidylcholine biosynthetic process [IDA, IMP]
- negative regulation of phosphatidylglycerol biosynthetic process [IMP]
- phosphatidylinositol metabolic process [IGI, IMP]
- phospholipid transport [IDA, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CSR1
Gene Ontology Biological Process
- Golgi to plasma membrane protein transport [IGI]
- Golgi to plasma membrane transport [IGI]
- negative regulation of fatty acid biosynthetic process [IDA, IGI, IMP]
- negative regulation of phosphatidylglycerol biosynthetic process [IGI]
- phosphatidylinositol metabolic process [IGI]
- phospholipid transport [IDA]
- positive regulation of phosphatidylcholine biosynthetic process [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth.
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet, SFH proteins sharing ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: heat sensitivity (APO:0000147)
- phenotype: protein activity (APO:0000022)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SEC14 CSR1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | High | - | BioGRID | 567358 | |
SEC14 CSR1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 2386677 | |
SEC14 CSR1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 259844 | |
SEC14 CSR1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 155380 | |
SEC14 CSR1 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 448922 | |
SEC14 CSR1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 258395 |
Curated By
- BioGRID