RPB9
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IMP]
- maintenance of transcriptional fidelity during DNA-templated transcription elongation from RNA polymerase II promoter [IGI, IMP]
- transcription from RNA polymerase II promoter [IMP]
- transcription initiation from RNA polymerase II promoter [IMP]
- transcription-coupled nucleotide-excision repair [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
DST1
Gene Ontology Biological Process
- mRNA cleavage [IDA, IMP]
- maintenance of transcriptional fidelity during DNA-templated transcription elongation from RNA polymerase II promoter [IGI, IMP]
- positive regulation of RNA polymerase II transcriptional preinitiation complex assembly [IDA, IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA]
- regulation of mRNA 3'-end processing [IGI, IMP]
- tRNA transcription from RNA polymerase III promoter [IMP]
- transcription antitermination [IDA]
- transcription elongation from RNA polymerase I promoter [IDA]
- transcription elongation from RNA polymerase II promoter [IDA, IMP]
- transcription from RNA polymerase III promoter [IDA]
- transcription initiation from RNA polymerase II promoter [IDA, IGI, IMP]
Gene Ontology Molecular Function
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
RNA polymerase II subunit Rpb9 regulates transcription elongation in vivo.
RNA polymerase II lacking the Rpb9 subunit uses alternate transcription initiation sites in vitro and in vivo and is unable to respond to the transcription elongation factor TFIIS in vitro. Here, we show that RPB9 has a synthetic phenotype with the TFIIS gene. Disruption of RPB9 in yeast also resulted in sensitivity to 6-azauracil, which is a phenotype linked to ... [more]
Throughput
- Low Throughput
Ontology Terms
- resistance to chemicals (APO:0000087)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPB9 DST1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
DST1 RPB9 | PCA PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay. | High | - | BioGRID | 661561 | |
DST1 RPB9 | PCA PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay. | High | - | BioGRID | - | |
DST1 RPB9 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 238599 | |
RPB9 DST1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 439046 | |
RPB9 DST1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 425775 | |
DST1 RPB9 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 439047 |
Curated By
- BioGRID