BAIT

NUP85

RAT9, L000003023, YJR042W
Subunit of the Nup84p subcomplex of the nuclear pore complex (NPC); contributes to nucleocytoplasmic transport and NPC biogenesis and is involved in establishment of a normal nucleocytoplasmic concentration gradient of the GTPase Gsp1p; also plays roles in several processes that may require localization of genes or chromosomes at the nuclear periphery, including double-strand break repair, transcription and chromatin silencing; homologous to human NUP85 aka NUP75
Saccharomyces cerevisiae (S288c)
PREY

NUP120

RAT2, L000003138, YKL057C
Subunit of the Nup84p subcomplex of the nuclear pore complex (NPC); contributes to nucleocytoplasmic transport and NPC biogenesis and is involved in establishment of a normal nucleocytoplasmic concentration gradient of the GTPase Gsp1p; also plays roles in several processes that may require localization of genes or chromosomes at the nuclear periphery, including double-strand break repair, transcription and chromatin silencing; homologous to human NUP160
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin Rat9p/Nup85p.

Goldstein AL, Snay CA, Heath CV, Cole CN

In a screen for mutants defective in nucleocytoplasmic export of mRNA, we have identified a new component of the Saccharomyces cerevisiae nuclear pore complex (NPC). The RAT9/NUP85 (ribonucleic acid trafficking) gene encodes an 84.9-kDa protein that we have localized to NPCs by tagging the RAT9/NUP85 gene with the in vivo molecular marker Green Fluorescent Protein. In cells containing either the ... [more]

Mol. Biol. Cell Jun. 01, 1996; 7(6);917-34 [Pubmed: 8816998]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
NUP120 NUP85
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
NUP85 NUP120
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
NUP120 NUP85
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NUP85 NUP120
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NUP85 NUP120
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High6BioGRID
3612192
NUP120 NUP85
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
3384863
NUP85 NUP120
Co-localization
Co-localization

Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.

Low-BioGRID
-
NUP120 NUP85
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

Low-BioGRID
-
NUP85 NUP120
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

Low-BioGRID
-
NUP85 NUP120
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

High-BioGRID
-
NUP85 NUP120
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-

Curated By

  • BioGRID