YPT1
Gene Ontology Biological Process
- COPII-coated vesicle budding [IMP]
- CVT pathway [IMP]
- ER to Golgi vesicle-mediated transport [IMP]
- Golgi vesicle budding [IGI]
- Golgi vesicle docking [IMP]
- SNARE complex disassembly [IMP]
- early endosome to Golgi transport [IMP]
- endocytic recycling [IMP]
- macroautophagy [IMP]
- pre-mRNA catabolic process [IMP]
- protein complex assembly [IDA]
- regulation of endoplasmic reticulum unfolded protein response [IMP]
- retrograde vesicle-mediated transport, Golgi to ER [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SEC23
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants.
The YPT1 gene encodes a raslike, GTP-binding protein that is essential for growth of yeast cells. We show here that mutations in the ypt1 gene disrupt transport of carboxypeptidase Y to the vacuole in vivo and transport of pro-alpha-factor to a site of extensive glycosylation in the Golgi apparatus in vitro. Two different ypt1 mutations result in loss of function ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SEC23 YPT1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 1109641 | |
YPT1 SEC23 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1679 | BioGRID | 1931314 | |
SEC23 YPT1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2457 | BioGRID | 1957455 |
Curated By
- BioGRID