BAIT

PKH1

serine/threonine protein kinase PKH1, L000004616, YDR490C
Serine/threonine protein kinase; involved in sphingolipid-mediated signaling pathway that controls endocytosis; activates Ypk1p and Ykr2p, components of signaling cascade required for maintenance of cell wall integrity; redundant with Pkh2p; PKH1 has a paralog, PKH2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

PKH2

serine/threonine protein kinase PKH2, L000004617, YOL100W
Serine/threonine protein kinase; involved in sphingolipid-mediated signaling pathway that controls endocytosis; activates Ypk1p and Ykr2p, components of signaling cascade required for maintenance of cell wall integrity; redundant with Pkh1p; PKH2 has a paralog, PKH1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

PDK1 homologs activate the Pkc1-mitogen-activated protein kinase pathway in yeast.

Inagaki M, Schmelzle T, Yamaguchi K, Irie K, Hall MN, Matsumoto K

PDK1 (phosphoinositide-dependent kinase 1) is a mammalian growth factor-regulated serine/threonine kinase. Using a genetic selection based on a mutant form of the yeast MAP kinase kinase Ste7, we isolated a gene, PKH2, encoding a structurally and functionally conserved yeast homolog of PDK1. Yeast cells lacking both PKH2 and PKH1, encoding another PDK1 homolog, were nonviable, indicating that Pkh1 and Pkh2 ... [more]

Mol. Cell. Biol. Dec. 01, 1999; 19(12);8344-52 [Pubmed: 10567559]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PKH1 PKH2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-11.4912BioGRID
515961
PKH2 PKH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-11.4912BioGRID
322969
PKH2 PKH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.3355BioGRID
580819
PKH2 PKH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-16.262BioGRID
895679
PKH2 PKH1
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

High-BioGRID
486014
PKH1 PKH2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
723775
PKH1 PKH2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2650266
PKH2 PKH1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
157259
PKH1 PKH2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163535
PKH1 PKH2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
632470
PKH1 PKH2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
483366
PKH2 PKH1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
1521947

Curated By

  • BioGRID