BAIT

DUN1

serine/threonine protein kinase DUN1, L000000531, YDL101C
Cell-cycle checkpoint serine-threonine kinase; required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage; Mec1p and Dun1p function in same pathway to regulate both dNTP pools and telomere length; also regulates postreplicative DNA repair
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

RNR4

CRT3, PSO3, ribonucleotide-diphosphate reductase subunit RNR4, L000002819, S000029396, L000004184, YGR180C
Ribonucleotide-diphosphate reductase (RNR) small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; relocalizes from nucleus to cytoplasm upon DNA replication stress; RNR4 has a paralog, RNR2, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae.

Huang M, Elledge SJ

Ribonucleotide reductase (RNR), which catalyzes the rate-limiting step for deoxyribonucleotide production required for DNA synthesis, is an alpha2beta2 tetramer consisting of two large and two small subunits. RNR2 encodes a small subunit and is essential for mitotic viability in Saccharomyces cerevisiae. We have cloned a second essential gene encoding a homologous small subunit, RNR4. RNR4 and RNR2 appear to have ... [more]

Mol. Cell. Biol. Oct. 01, 1997; 17(10);6105-13 [Pubmed: 9315670]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DUN1 RNR4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453897

Curated By

  • BioGRID