SWI6
Gene Ontology Biological Process
- positive regulation of reciprocal meiotic recombination [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription from RNA polymerase II promoter in response to heat stress [IMP]
- positive regulation of transcription involved in G1/S transition of mitotic cell cycle [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
GIN4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
Multiple pathways for suppression of mutants affecting G1-specific transcription in Saccharomyces cerevisiae.
In the budding yeast, Saccharomyces cerevisiae, control of cell proliferation is exerted primarily during G(1) phase. The G(1)-specific transcription of several hundred genes, many with roles in early cell cycle events, requires the transcription factors SBF and MBF, each composed of Swi6 and a DNA-binding protein, Swi4 or Mbp1, respectively. Binding of these factors to promoters is essential but insufficient ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: heat sensitivity (APO:0000147)
Additional Notes
- Overexpression of PAB1, GIN4, FBA1, or RPL40a rescues the heat sensitivity of a bck2 swi6 double mutant.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
GIN4 SWI6 | Dosage Growth Defect Dosage Growth Defect A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene. | High | -0.36 | BioGRID | 909007 | |
GIN4 SWI6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1353 | BioGRID | 371452 | |
GIN4 SWI6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1741 | BioGRID | 2103509 | |
GIN4 SWI6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.5473 | BioGRID | 324651 | |
GIN4 SWI6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.135 | BioGRID | 911851 |
Curated By
- BioGRID