BAIT

PIK1

PIK120, PIK41, 1-phosphatidylinositol 4-kinase, L000001439, L000001438, YNL267W
Phosphatidylinositol 4-kinase; catalyzes first step in the biosynthesis of phosphatidylinositol-4,5-biphosphate; may control cytokinesis through the actin cytoskeleton; may control nonselective autophagy and mitophagy through trafficking of Atg9p
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

INP53

SJL3, SOP2, phosphatidylinositol-3-/phosphoinositide 5-phosphatase INP53, L000003984, YOR109W
Polyphosphatidylinositol phosphatase; dephosphorylates multiple phosphatidylinositol phosphates; involved in trans Golgi network-to-early endosome pathway; hyperosmotic stress causes translocation to actin patches; contains Sac1 and 5-ptase domains; INP53 has a paralog, INP52, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Interaction of Pik1p and Sjl proteins in membrane trafficking.

Nguyen PH, Hasek J, Kohlwein SD, Romero C, Choi JH, Vancura A

Phosphatidylinositol (PtdIns) phosphates are involved in signal transduction, cytoskeletal organization, and membrane traffic. PtdIns 4-phosphate [PtdIns(4)P], produced in yeast by PtdIns 4-kinase (Pik1p), appears to regulate Golgi secretory function. PtdIns(4)P is also produced by dephosphorylation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], catalyzed by one of the three yeast Sjl proteins, homologs of the mammalian synaptic vesicle-associated PtdIns(4,5)P2 5-phosphatase, synaptojanin. To determine whether ... [more]

FEMS Yeast Res. Feb. 01, 2005; 5(4);363-71 [Pubmed: 15691741]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID