BAIT

ZEO1

L000003927, YOL109W
Peripheral membrane protein of the plasma membrane; interacts with Mid2p; regulates the cell integrity pathway mediated by Pkc1p and Slt2p; the authentic protein is detected in a phosphorylated state in highly purified mitochondria
GO Process (1)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

SAC7

L000001794, YDR389W
GTPase activating protein (GAP) for Rho1p; regulator of a Tor2p-mediated, Rho1p GTPase switch that controls organization of the actin cytoskeleton; negative regulator of the RHO1-PKC1-MAPK cell integrity (CWI) and membrane fluidity homeostasis signaling pathways; potential Cdc28p substrate; SAC7 has a paralog, BAG7, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway.

Green R, Lesage G, Sdicu AM, Menard P, Bussey H

Mid2p is a plasma membrane protein that functions in Saccharomyces cerevisiae as a sensor of cell wall stress, activating the PKC1-MPK1 cell integrity pathway via the small GTPase Rho1p during exposure to mating pheromone, calcofluor white, and heat. To examine Mid2p signalling, a global synthetic interaction analysis of a mid2 mutant was performed; this identified 11 interacting genes. These include ... [more]

Microbiology (Reading, Engl.) Sep. 01, 2003; 149(0);2487-99 [Pubmed: 12949174]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ZEO1 SAC7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.9868BioGRID
895858

Curated By

  • BioGRID