BAIT

SRS2

HPR5, DNA helicase SRS2, RADH1, RADH, L000000809, L000001578, YJL092W
DNA helicase and DNA-dependent ATPase; involved in DNA repair and checkpoint recovery, needed for proper timing of commitment to meiotic recombination and transition from Meiosis I to II; blocks trinucleotide repeat expansion; affects genome stability; disassembles Rad51p nucleoprotein filaments during meiotic recombination; functional homolog of human RTEL1
Saccharomyces cerevisiae (S288c)
PREY

TOP3

EDR1, DNA topoisomerase 3, L000002321, YLR234W
DNA Topoisomerase III; conserved protein that functions in a complex with Sgs1p and Rmi1p to relax single-stranded negatively-supercoiled DNA preferentially; DNA catenation/decatenation activity stimulated by RPA and Sgs1p-Top2p-Rmi1p; involved in telomere stability and regulation of mitotic recombination
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage.

Xu H, Boone C, Klein HL

The SRS2 gene of Saccharomyces cerevisiae encoding a 3'-->5' DNA helicase is part of the postreplication repair pathway and functions to ensure proper repair of DNA damage arising during DNA replication through pathways that do not involve homologous recombination. Through a synthetic gene array analysis, genes that are essential when Srs2 is absent have been identified. Among these are MRC1, ... [more]

Mol. Cell. Biol. Aug. 01, 2004; 24(16);7082-90 [Pubmed: 15282308]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TOP3 SRS2
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low/High-BioGRID
530734
TOP3 SRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.5774BioGRID
224570
SRS2 TOP3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3871BioGRID
2135892
SRS2 TOP3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
452238
SRS2 TOP3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2468548
TOP3 SRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
159025
TOP3 SRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
159032

Curated By

  • BioGRID