BAIT

BRE1

E3 ubiquitin-protein ligase BRE1, YDL074C
E3 ubiquitin ligase; forms heterodimer with Rad6p to monoubiquinate histone H2B-K123, which is required for the subsequent methylation of histone H3-K4 and H3-K79; required for DSBR, transcription, silencing, and checkpoint control; interacts with RNA-binding protein Npl3p, linking histone ubiquitination to mRNA processing; Bre1p-dependent histone ubiquitination promotes pre-mRNA splicing
Saccharomyces cerevisiae (S288c)
PREY

SPT4

transcription elongation factor SPT4, L000002030, YGR063C
Component of the universally conserved Spt4/5 complex (DSIF complex); the complex has multiple roles in concert with RNA polymerases I and II, including regulation of transcription elongation, RNA processing, quality control, and transcription-coupled DNA repair; Spt4p also localizes to kinetochores and heterochromatin and affects chromosome dynamics and silencing; required for transcription through lengthy trinucleotide repeats in ORFs or non-protein coding regions
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex.

Laribee RN, Krogan NJ, Xiao T, Shibata Y, Hughes TR, Greenblatt JF, Strahl BD

Histone-lysine methylation is linked to transcriptional regulation and the control of epigenetic inheritance. Lysine residues can be mono-, di-, or trimethylated, and it has been suggested that each methylation state of a given lysine may impart a unique biological function. In yeast, histone H3 lysine 4 (K4) is mono-, di-, and trimethylated by the Set1 histone methyltransferase. Previous studies show ... [more]

Curr. Biol. Aug. 23, 2005; 15(16);1487-93 [Pubmed: 16040246]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
BRE1 SPT4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
239492

Curated By

  • BioGRID