TFC1
Gene Ontology Biological Process
Gene Ontology Molecular Function- DNA binding, bending [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- DNA binding, bending [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
Gene Ontology Cellular Component
TFC6
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Proteome survey reveals modularity of the yeast cell machinery.
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TFC6 TFC1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 2556273 | |
TFC1 TFC6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
TFC1 TFC6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
TFC1 TFC6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 10 | BioGRID | 3605467 | |
TFC1 TFC6 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
TFC1 TFC6 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
TFC1 TFC6 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
TFC1 TFC6 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | Low | - | BioGRID | - | |
TFC6 TFC1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5669 | BioGRID | 1927454 | |
TFC1 TFC6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7905 | BioGRID | 1920974 |
Curated By
- BioGRID