PMT3
Gene Ontology Biological Process
Gene Ontology Molecular Function
PMT2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital.
The transfer of mannose to seryl and threonyl residues of secretory proteins is catalyzed by a family of protein mannosyltransferases coded for by seven genes (PMT1-7). Mannose dolichylphosphate is the sugar donor of the reaction, which is localized at the endoplasmic reticulum. By gene disruption and crosses all single, double and triple mutants of genes PMT1-4 were constructed. Two of ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- pmt1/2/3 triple mutant
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PMT3 PMT2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -1.069 | BioGRID | 417684 | |
PMT3 PMT2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -1.0158 | BioGRID | 2187271 | |
PMT2 PMT3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.8291 | BioGRID | 2075893 | |
PMT2 PMT3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -9.3035 | BioGRID | 210262 | |
PMT3 PMT2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -9.3035 | BioGRID | 210298 | |
PMT2 PMT3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -13.2593 | BioGRID | 898350 | |
PMT3 PMT2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 346388 | |
PMT2 PMT3 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 202026 |
Curated By
- BioGRID