BAIT

GRX3

monothiol glutaredoxin GRX3, S000007444, YDR098C
Glutathione-dependent oxidoreductase; hydroperoxide and superoxide-radical responsive; monothiol glutaredoxin subfamily member along with Grx4p and Grx5p; protects cells from oxidative damage; with Grx4p, binds to Aft1p in iron-replete conditions, promoting its dissociation from promoters; evidence exists indicating that the translation start site is not Met1 as currently annotated, but rather Met36; GRX3 has a paralog, GRX4, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

RSP5

MDP1, MUT2, NPI1, SMM1, UBY1, NEDD4 family E3 ubiquitin-protein ligase, L000001054, L000001779, L000001220, YER125W
E3 ubiquitin ligase of NEDD4 family; regulates many cellular processes including MVB sorting, heat shock response, transcription, endocytosis, ribosome stability; mutant tolerates aneuploidy; autoubiquitinates; ubiquitinates Sec23p and Sna3p; deubiquitinated by Ubp2p; activity regulated by SUMO ligase Siz1p, in turn regulates Siz1p SUMO ligase activity; required for efficient Golgi-to-ER trafficking in COPI mutants; human homolog implicated in Liddle syndrome
GO Process (33)
GO Function (3)
GO Component (9)

Gene Ontology Biological Process

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A global genetic interaction network maps a wiring diagram of cellular function.

Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]

Science Sep. 23, 2016; 353(6306); [Pubmed: 27708008]

Quantitative Score

  • -0.3147 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
  • alleles: grx3 - rsp5-sm1 [SGA score = -0.3147, P-value = 6.757E-35]

Curated By

  • BioGRID