BAIT

DIA2

YOR29-31, DNA-binding SCF ubiquitin ligase subunit DIA2, YOR080W
Origin-binding F-box protein; forms SCF ubiquitin ligase complex with Skp1p and Cdc53p; functions in ubiquitylation of silent chromatin structural protein Sir4p; required to target Cdc6p for destruction during G1 phase; required for deactivation of Rad53 checkpoint kinase, completion of DNA replication during recovery from DNA damage, assembly of RSC complex, RSC-mediated transcription regulation, and nucleosome positioning; involved in invasive and pseudohyphal growth
Saccharomyces cerevisiae (S288c)
PREY

NFI1

SIZ2, SUMO ligase NFI1, L000002966, YOR156C
SUMO E3 ligase; catalyzes sumoylation of Yku70p/Yku80p and Sir4p promoting chromatin anchoring; DNA-bound form catalyzes a DNA-damaged triggered sumoylation wave resulting in multisite modification of several DNA repair proteins, enhancing interactions between these proteins and accelerating repair; promotes telomere anchoring to the nuclear envelope; involved in maintenance of proper telomere length; NFI1 has a paralog, SIZ1, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.

Blake D, Luke B, Kanellis P, Jorgensen P, Goh T, Penfold S, Breitkreutz BJ, Durocher D, Peter M, Tyers M

The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin-ligase complex. Systematic analysis of ... [more]

Genetics Dec. 01, 2006; 174(4);1709-27 [Pubmed: 16751663]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
NFI1 DIA2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
341865

Curated By

  • BioGRID