BAIT

DIA2

YOR29-31, DNA-binding SCF ubiquitin ligase subunit DIA2, YOR080W
Origin-binding F-box protein; forms SCF ubiquitin ligase complex with Skp1p and Cdc53p; functions in ubiquitylation of silent chromatin structural protein Sir4p; required to target Cdc6p for destruction during G1 phase; required for deactivation of Rad53 checkpoint kinase, completion of DNA replication during recovery from DNA damage, assembly of RSC complex, RSC-mediated transcription regulation, and nucleosome positioning; involved in invasive and pseudohyphal growth
Saccharomyces cerevisiae (S288c)
PREY

RAD53

LSD1, MEC2, SPK1, serine/threonine/tyrosine protein kinase RAD53, L000001573, YPL153C
DNA damage response protein kinase; required for cell-cycle arrest in response to DNA damage; activated by trans autophosphorylation when interacting with hyperphosphorylated Rad9p; also interacts with ARS1 and plays a role in initiation of DNA replication; activates the downstream kinase Dun1p; differentially senses mtDNA depletion and mitochondrial ROS; required for regulation of copper genes in response to DNA-damaging agents; relocalizes to cytosol in response to hyoxia
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.

Blake D, Luke B, Kanellis P, Jorgensen P, Goh T, Penfold S, Breitkreutz BJ, Durocher D, Peter M, Tyers M

The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin-ligase complex. Systematic analysis of ... [more]

Genetics Dec. 01, 2006; 174(4);1709-27 [Pubmed: 16751663]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • dia2 sml1 rad53 triple mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD53 DIA2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2345BioGRID
2021746
RAD53 DIA2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
456182

Curated By

  • BioGRID