SIN3
Gene Ontology Biological Process
- double-strand break repair via nonhomologous end joining [IMP]
- histone deacetylation [IMP]
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IMP]
- negative regulation of transcription during meiosis [IMP]
- negative regulation of transcription from RNA polymerase I promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to heat stress [IMP]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- transfer RNA gene-mediated silencing [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
KIN28
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [IMP]
- phosphorylation of RNA polymerase II C-terminal domain [IDA, IMP]
- phosphorylation of RNA polymerase II C-terminal domain involved in recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP, IPI]
- phosphorylation of RNA polymerase II C-terminal domain serine 5 residues involved in recruitment of mRNA capping enzyme to RNA polymerase II holoenzyme complex [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- protein phosphorylation [IDA]
- transcription from RNA polymerase I promoter [IMP]
- transcription from RNA polymerase II promoter [IDA, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A global genetic interaction network maps a wiring diagram of cellular function.
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]
Quantitative Score
- -0.1316 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
- alleles: sin3 - kin28-ts [SGA score = -0.1316, P-value = 0.02101]
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
KIN28 SIN3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1788 | BioGRID | 1965592 |
Curated By
- BioGRID