NUP84
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IMP]
- chromatin silencing at silent mating-type cassette [IDA]
- double-strand break repair [IGI, IMP]
- mRNA export from nucleus [IMP]
- mRNA export from nucleus in response to heat stress [IMP]
- maintenance of chromatin silencing at telomere [IMP]
- nuclear pore distribution [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI, IMP]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- protein import into nucleus [IMP]
- telomere tethering at nuclear periphery [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RAD52
Gene Ontology Biological Process
- DNA amplification [IMP]
- DNA recombinase assembly [IDA]
- DNA strand renaturation [IDA]
- double-strand break repair via break-induced replication [IMP]
- double-strand break repair via homologous recombination [IMP]
- double-strand break repair via single-strand annealing [IGI]
- meiotic joint molecule formation [IGI, IMP]
- postreplication repair [IMP]
- telomere maintenance via recombination [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A global genetic interaction network maps a wiring diagram of cellular function.
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]
Quantitative Score
- -0.1246 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
- alleles: nup84 - rad52 [SGA score = -0.1246, P-value = 0.03527]
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD52 NUP84 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -12.2635 | BioGRID | 213686 | |
RAD52 NUP84 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -11.5217 | BioGRID | 322473 | |
NUP84 RAD52 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 1277719 | |
NUP84 RAD52 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 2651713 |
Curated By
- BioGRID