MET32
Gene Ontology Biological Process
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- regulation of mitotic cell cycle [IGI, IMP]
- regulation of sulfur amino acid metabolic process [IDA, IGI, IMP]
- regulation of transcription from RNA polymerase II promoter [IDA, IGI]
Gene Ontology Molecular Function- RNA polymerase II activating transcription factor binding [IDA, IPI]
- core promoter proximal region sequence-specific DNA binding [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IDA, IGI, IPI]
- RNA polymerase II activating transcription factor binding [IDA, IPI]
- core promoter proximal region sequence-specific DNA binding [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IDA, IGI, IPI]
MET31
Gene Ontology Biological Process
Gene Ontology Molecular Function
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A global genetic interaction network maps a wiring diagram of cellular function.
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]
Quantitative Score
- -0.6334 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
- alleles: met32 - met31 [SGA score = -0.6334, P-value = 1.329E-29]
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MET31 MET32 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -11.6277 | BioGRID | 541312 | |
MET31 MET32 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.8827 | BioGRID | 420894 | |
MET32 MET31 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.8827 | BioGRID | 368579 | |
MET31 MET32 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.8446 | BioGRID | 2189261 | |
MET32 MET31 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -13.9695 | BioGRID | 508977 | |
MET31 MET32 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 156373 | |
MET31 MET32 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 435859 | |
MET31 MET32 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2890067 | |
MET31 MET32 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 163866 | |
MET31 MET32 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 656488 |
Curated By
- BioGRID