BAIT

PMT1

dolichyl-phosphate-mannose-protein mannosyltransferase PMT1, L000001458, YDL095W
Protein O-mannosyltransferase of the ER membrane; transfers mannose from dolichyl phosphate-D-mannose to protein serine and threonine residues; 1 of 7 related proteins involved in O-glycosylation which is essential for cell wall rigidity; involved in ER quality control; amino terminus faces cytoplasm, carboxyl terminus faces ER lumen
Saccharomyces cerevisiae (S288c)
PREY

DPM1

SED3, dolichyl-phosphate beta-D-mannosyltransferase, L000000524, YPR183W
Dolichol phosphate mannose (Dol-P-Man) synthase of the ER membrane; catalyzes the formation of Dol-P-Man from Dol-P and GDP-Man; required for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and protein glycosylation
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile.

Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ

We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes ... [more]

Cell Nov. 04, 2005; 123(3);507-19 [Pubmed: 16269340]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PMT1 DPM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7414BioGRID
2032388
DPM1 PMT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6204BioGRID
2025757
DPM1 PMT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-9.1118BioGRID
207618

Curated By

  • BioGRID