BAIT
CKA2
YOR29-12, casein kinase 2 catalytic subunit CKA2, L000000344, YOR061W
Alpha' catalytic subunit of casein kinase 2 (CK2); CK2 is a Ser/Thr protein kinase with roles in cell growth and proliferation; CK2, comprised of CKA1, CKA2, CKB1 and CKB2, has many substrates including transcription factors and all RNA polymerases; protein abundance increases in response to DNA replication stress; regulates Fkh1p-mediated donor preference during mating-type switching
GO Process (7)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
HAC1
ERN4, IRE15, transcription factor HAC1, L000002611, YFL031W
Basic leucine zipper (bZIP) transcription factor (ATF/CREB1 homolog); regulates the unfolded protein response, via UPRE binding, and membrane biogenesis; ER stress-induced splicing pathway facilitates efficient Hac1p synthesis; protein abundance increases in response to DNA replication stress
GO Process (4)
GO Function (2)
GO Component (1)
Gene Ontology Biological Process
- endoplasmic reticulum unfolded protein response [IMP]
- negative regulation of transcription from RNA polymerase II promoter during meiosis [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter involved in unfolded protein response [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Dosage Lethality
A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.
Publication
Functional Analysis of Kinases and Transcription Factors in Saccharomyces cerevisiae Using an Integrated Overexpression Library.
Kinases and transcription factors (TFs) are key modulators of important signaling pathways and their activities underlie the proper function of many basic cellular processes such as cell division, differentiation and development. Changes in kinase and TF dosage are often associated with disease, yet a systematic assessment of the cellular phenotypes caused by the combined perturbation of kinases and TFs has ... [more]
G3 (Bethesda) Jan. 25, 2017; 0(0); [Pubmed: 28122947]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID