MAPKAPK2
Gene Ontology Biological Process
- 3'-UTR-mediated mRNA stabilization [IDA]
- G2 DNA damage checkpoint [IMP]
- MAPK cascade [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- RNA metabolic process [TAS]
- Ras protein signal transduction [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- activation of MAPK activity [TAS]
- arachidonic acid metabolic process [TAS]
- cellular response to DNA damage stimulus [IMP]
- cellular response to vascular endothelial growth factor stimulus [IMP]
- gene expression [TAS]
- inflammatory response [ISS]
- innate immune response [TAS]
- leukotriene metabolic process [TAS]
- mRNA metabolic process [TAS]
- macropinocytosis [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IDA]
- protein phosphorylation [TAS]
- regulation of interleukin-6 production [ISS]
- regulation of tumor necrosis factor production [IDA]
- response to cytokine [IDA]
- response to lipopolysaccharide [ISS]
- response to stress [IDA]
- small molecule metabolic process [TAS]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [ISS, TAS]
- vascular endothelial growth factor receptor signaling pathway [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MDM2
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [IMP, TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- cellular response to hypoxia [IEP]
- epidermal growth factor receptor signaling pathway [TAS]
- establishment of protein localization [IDA]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- negative regulation of DNA damage response, signal transduction by p53 class mediator [IDA]
- negative regulation of cell cycle arrest [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-lysine modification [IMP]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of cell proliferation [TAS]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- protein complex assembly [IDA]
- protein destabilization [IDA]
- protein localization to nucleus [IDA]
- protein ubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of protein catabolic process [IDA]
- response to antibiotic [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
HDM2 phosphorylation by MAPKAP kinase 2.
p53 stability is regulated by HDM2, a RING domain protein that acts as an E3 ligase to ubiquitinate p53 and target its degradation. Phosphorylation of HDM2 on serine 166 by AKT has been shown to enhance HDM2 activity and promote the degradation of p53. Here, we show that MAPKAP kinase 2 (MK2) can phosphorylate HDM2 on serine 157 and 166 ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| MDM2 MAPKAPK2 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 3311949 |
Curated By
- BioGRID