BAIT

SGS1

ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

WSS1

YHR134W
Metalloprotease involved in DNA repair, removes DNA-protein crosslinks at stalled replication forks during replication of damaged DNA; sumoylated protein localizing to the nuclear periphery of mother cells; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA binding
GO Process (6)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci.

Styles EB, Founk KJ, Zamparo LA, Sing TL, Altintas D, Ribeyre C, Ribaud V, Rougemont J, Mayhew D, Costanzo M, Usaj M, Verster AJ, Koch EN, Novarina D, Graf M, Luke B, Muzi-Falconi M, Myers CL, Mitra RD, Shore D, Brown GW, Zhang Z, Boone C, Andrews BJ

A significant challenge of functional genomics is to develop methods for genome-scale acquisition and analysis of cell biological data. Here, we present an integrated method that combines genome-wide genetic perturbation of Saccharomyces cerevisiae with high-content screening to facilitate the genetic description of sub-cellular structures and compartment morphology. As proof of principle, we used a Rad52-GFP marker to examine DNA damage foci ... [more]

Cell Syst Sep. 28, 2016; 3(3);264-277.e10 [Pubmed: 27617677]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: subcellular morphology (APO:0000226)
  • phenotype: mitotic recombination (APO:0000225)

Additional Notes

  • frequency of Rad52 foci

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SGS1 WSS1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
445117
SGS1 WSS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5923BioGRID
405462
WSS1 SGS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6319BioGRID
2128442
SGS1 WSS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6025BioGRID
2164104
SGS1 WSS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
2894221
SGS1 WSS1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
341375
SGS1 WSS1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
445111
WSS1 SGS1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
428664
WSS1 SGS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163249
SGS1 WSS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
166676
SGS1 WSS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
456174
WSS1 SGS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
1035800
SGS1 WSS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
109209
SGS1 WSS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
450122
SGS1 WSS1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
855733
WSS1 SGS1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
3579761

Curated By

  • BioGRID