BAIT
SET2
EZL1, histone methyltransferase SET2, KMT3, L000003090, YJL168C
Histone methyltransferase with a role in transcriptional elongation; methylates H3 lysine 36 (H3K36), which suppresses incorporation of acetylated histones and signals for the deacetylation of these histones within transcribed genes; associates with the C-terminal domain(CTD) of Rpo21p; H3K36me3 (trimethylation) requires Spt6p, proline 38 on H3, CTD of Rpo21p, Ctk1p, and C-terminal SRI domain of Ste2p; relocalizes to the cytosol in response to hypoxia
GO Process (13)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
- DNA-templated transcription, elongation [IDA, IPI]
- DNA-templated transcription, termination [IMP]
- ascospore formation [IMP]
- histone deacetylation [IMP]
- histone methylation [IDA, IMP]
- negative regulation of antisense RNA transcription [IMP]
- negative regulation of histone H3-K14 acetylation [IMP]
- negative regulation of histone H3-K9 acetylation [IMP]
- negative regulation of reciprocal meiotic recombination [IMP]
- positive regulation of histone acetylation [IGI]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of histone exchange [IMP]
- regulation of transcription, DNA-templated [IDA, IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
SNF1
CAT1, CCR1, GLC2, HAF3, PAS14, AMP-activated serine/threonine-protein kinase catalytic subunit SNF1, L000001944, YDR477W
AMP-activated serine/threonine protein kinase; found in a complex containing Snf4p and members of the Sip1p/Sip2p/Gal83p family; required for transcription of glucose-repressed genes, thermotolerance, sporulation, and peroxisome biogenesis; involved in regulation of the nucleocytoplasmic shuttling of Hxk2p; regulates filamentous growth in response to starvation; SUMOylation by Mms21p inhibits its function and targets Snf1p for destruction via the Slx5-Slx8 Ubiquitin ligase
GO Process (12)
GO Function (3)
GO Component (6)
Gene Ontology Biological Process
- cell adhesion [IMP]
- cellular response to nitrogen starvation [IDA]
- fungal-type cell wall assembly [IMP]
- invasive growth in response to glucose limitation [IMP]
- negative regulation of translation [IGI, IMP]
- positive regulation of filamentous growth of a population of unicellular organisms in response to starvation [IMP]
- positive regulation of gluconeogenesis [IMP]
- protein phosphorylation [IDA]
- pseudohyphal growth [IMP]
- regulation of carbohydrate metabolic process [IGI, IPI]
- replicative cell aging [IGI, IMP]
- single-species surface biofilm formation [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy.
An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting interactions between its driving mutations and specific drug targets. Here we use a multi-species approach to develop a resource of synthetic lethal interactions relevant to cancer therapy. First, we screen in yeast ∼169,000 potential interactions among orthologs of human tumor suppressor genes (TSG) and ... [more]
Mol. Cell Aug. 04, 2016; 63(3);514-25 [Pubmed: 27453043]
Quantitative Score
- -2.69 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- colony size (APO:0000063)
Additional Notes
- Untreated conditions. SGA was used to score genetic interactions based on the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID