BAIT
DUN1
serine/threonine protein kinase DUN1, L000000531, YDL101C
Cell-cycle checkpoint serine-threonine kinase; required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage; Mec1p and Dun1p function in same pathway to regulate both dNTP pools and telomere length; also regulates postreplicative DNA repair
GO Process (3)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
SCH9
HRM2, KOM1, serine/threonine protein kinase SCH9, L000001810, YHR205W
AGC family protein kinase; functional ortholog of mammalian S6 kinase; phosphorylated by Tor1p and required for TORC1-mediated regulation of ribosome biogenesis, translation initiation, and entry into G0 phase; involved in transactivation of osmostress-responsive genes; regulates G1 progression, cAPK activity and nitrogen activation of the FGM pathway; integrates nutrient signals and stress signals from sphingolipids to regulate lifespan
GO Process (11)
GO Function (1)
GO Component (4)
Gene Ontology Biological Process
- age-dependent response to oxidative stress involved in chronological cell aging [IMP]
- positive regulation of ribosomal protein gene transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase I promoter [IGI, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IGI, IMP]
- protein phosphorylation [IMP]
- regulation of cell size [IMP]
- regulation of protein localization [IMP]
- regulation of response to osmotic stress [IMP]
- regulation of sphingolipid biosynthetic process [IMP]
- regulation of transcription from RNA polymerase II promoter in response to oxidative stress [IMP]
- replicative cell aging [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy.
An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting interactions between its driving mutations and specific drug targets. Here we use a multi-species approach to develop a resource of synthetic lethal interactions relevant to cancer therapy. First, we screen in yeast ∼169,000 potential interactions among orthologs of human tumor suppressor genes (TSG) and ... [more]
Mol. Cell Aug. 04, 2016; 63(3);514-25 [Pubmed: 27453043]
Quantitative Score
- -6.35 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Untreated conditions. SGA was used to score genetic interactions based on the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID