RUVBL2
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- DNA duplex unwinding [IDA, TAS]
- cellular response to UV [IMP]
- cellular response to estradiol stimulus [IMP]
- chromatin organization [TAS]
- chromatin remodeling [IMP]
- establishment of protein localization to chromatin [IMP]
- histone H2A acetylation [IDA]
- histone H4 acetylation [IDA]
- negative regulation of estrogen receptor binding [IMP]
- positive regulation of histone acetylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- protein folding [TAS]
- transcriptional activation by promoter-enhancer looping [IMP]
Gene Ontology Molecular Function- ATP-dependent DNA helicase activity [TAS]
- ATPase activity [IDA]
- DNA helicase activity [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- chromatin DNA binding [IDA]
- identical protein binding [IDA, IPI]
- protein binding [IPI]
- unfolded protein binding [TAS]
- ATP-dependent DNA helicase activity [TAS]
- ATPase activity [IDA]
- DNA helicase activity [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- chromatin DNA binding [IDA]
- identical protein binding [IDA, IPI]
- protein binding [IPI]
- unfolded protein binding [TAS]
Gene Ontology Cellular Component
UPF1
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- DNA repair [IDA]
- DNA replication [IMP]
- RNA metabolic process [TAS]
- gene expression [TAS]
- histone mRNA catabolic process [IMP]
- mRNA export from nucleus [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process [IMP]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [IDA, IMP, NAS, TAS]
- regulation of translational termination [IMP, NAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein.
The R2TP/Prefoldin-like (R2TP/PFDL) complex has emerged as a cochaperone complex involved in the assembly of a number of critical protein complexes including snoRNPs, nuclear RNA polymerases and PIKK-containing complexes. Here we report on the use of multiple target affinity purification coupled to mass spectrometry to identify two additional complexes that interact with R2TP/PFDL: the TSC1-TSC2 complex and the U5 small ... [more]
Quantitative Score
- 567.0 [Mascot Score]
Throughput
- High Throughput
Additional Notes
- False discovery rate (FDR) cutoff was set to 0.1 for the soluble fraction and 0.2 for the chromatin fraction.Some additional known interactors in the soluble fraction with an FDR < 0.2 were included.
- Soluble
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| UPF1 RUVBL2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID