BAIT

NSP1

FG-nucleoporin NSP1, L000001277, YJL041W
FG-nucleoporin component of central core of the nuclear pore complex; also part of the nuclear pore complex (NPC) nuclear basket; contributes directly to nucleocytoplasmic transport and maintenance of the NPC permeability barrier; found in stable complex with Nup82p, Gle2p and two other FG-nucleoporins (Nup159p and Nup116p); also found in stable complex with Nic96p and two other FG-nucleoproteins (Nup49p and Nup57p)
Saccharomyces cerevisiae (S288c)
PREY

NUP159

NUP158, RAT7, FG-nucleoporin NUP159, L000002782, YIL115C
FG-nucleoporin component of central core of the nuclear pore complex; also part of the nuclear pore complex (NPC) cytoplasmic filaments; contributes directly to nucleocytoplasmic transport; regulates ADP release from the ATP-dependent RNA helicase Dbp5p; forms a stable association with Nup82p, Gle2p and two other FG-nucleoporins (Nsp1p and Nup116p)
Saccharomyces cerevisiae (S288c)

Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Publication

Structure and Function of the Nuclear Pore Complex Cytoplasmic mRNA Export Platform.

Fernandez-Martinez J, Kim SJ, Shi Y, Upla P, Pellarin R, Gagnon M, Chemmama IE, Wang J, Nudelman I, Zhang W, Williams R, Rice WJ, Stokes DL, Zenklusen D, Chait BT, Sali A, Rout MP

The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The ... [more]

Cell Dec. 17, 2015; 167(5);1215-1228.e25 [Pubmed: 27839866]

Throughput

  • High Throughput|Low Throughput

Additional Notes

  • Cross-linked residues identified by MS

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
NUP159 NSP1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
NSP1 NUP159
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
NSP1 NUP159
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
NSP1 NUP159
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NUP159 NSP1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NSP1 NUP159
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NSP1 NUP159
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NUP159 NSP1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NSP1 NUP159
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NUP159 NSP1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High10BioGRID
3610122
NUP159 NSP1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
3384904
NSP1 NUP159
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
3384828
NSP1 NUP159
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
NUP159 NSP1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
NUP159 NSP1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
NSP1 NUP159
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3456BioGRID
1938867
NSP1 NUP159
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
NUP159 NSP1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low/High-BioGRID
2377185
NUP159 NSP1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
238838

Curated By

  • BioGRID