BAIT

TEL1

DNA-binding protein kinase TEL1, L000002281, YBL088C
Protein kinase primarily involved in telomere length regulation; contributes to cell cycle checkpoint control in response to DNA damage; acts with Red1p and Mec1p to promote interhomolog recombination by phosphorylation of Hop1; functionally redundant with Mec1p; regulates P-body formation induced by replication stress; homolog of human ataxia-telangiectasia mutated (ATM) gene, the gene responsible for ataxia telangiectasia (AT) (OMIM 607585)
Saccharomyces cerevisiae (S288c)
PREY

SAE2

COM1, ssDNA endodeoxyribonuclease SAE2, L000002892, YGL175C
Endonuclease required for telomere elongation; also required for telomeric 5' C-rich strand resection; involved in processing hairpin DNA structures with MRX complex; involved in double-strand break repair; required for normal resistance to DNA-damaging agents; exists in form of inactive oligomers that are transiently released into smaller active units by a series of phosphorylations; DNA damage triggers removal of Sae2p ensuring that active Sae2p is present only transiently
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Tel1/ATM prevents degradation of replication forks that reverse after topoisomerase poisoning.

Menin L, Ursich S, Trovesi C, Zellweger R, Lopes M, Longhese MP, Clerici M

In both yeast and mammals, the topoisomerase poison camptothecin (CPT) induces fork reversal, which has been proposed to stabilize replication forks, thus providing time for the repair of CPT-induced lesions and supporting replication restart. We show that Tel1, the Saccharomyces cerevisiae orthologue of human ATM kinase, stabilizes CPT-induced reversed forks by counteracting their nucleolytic degradation by the MRX complex. Tel1-lacking ... [more]

EMBO Rep. May. 08, 2018; (); [Pubmed: 29739811]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • tel1/mre11-H125N and tel1/sae2 double mutants were more sensitive to CPT than tel1 mutant cells

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TEL1 SAE2
Biochemical Activity
Biochemical Activity

An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.

Low-BioGRID
1239746
TEL1 SAE2
Dosage Growth Defect
Dosage Growth Defect

A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene.

Low-BioGRID
519356
TEL1 SAE2
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
645219
SAE2 TEL1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1257284
SAE2 TEL1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3537316
SAE2 TEL1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1113167
SAE2 TEL1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2614445
SAE2 TEL1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2543628
SAE2 TEL1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
937507
SAE2 TEL1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
2204383
SAE2 TEL1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
3573378

Curated By

  • BioGRID