BAIT

EXO1

DHS1, Rad2 family nuclease EXO1, L000000505, L000003929, YOR033C
5'-3' exonuclease and flap-endonuclease; involved in recombination, double-strand break repair, MMS2 error-free branch of the post replication (PRR) pathway and DNA mismatch repair; role in telomere maintenance; member of the Rad2p nuclease family, with conserved N and I nuclease domains; relative distribution to the nucleus increases upon DNA replication stress; EXO1 has a paralog, DIN7, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

REV3

PSO1, L000001616, YPL167C
Catalytic subunit of DNA polymerase zeta; involved in translesion synthesis during post-replication repair; required for mutagenesis induced by DNA damage; involved in double-strand break repair; forms a complex with Rev7p, Pol31p and Pol32p
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae.

Dahal BK, Kadyrova LY, Delfino KR, Rogozin IB, Gujar V, Lobachev KS, Kadyrov FA

Heterochromatin contains a significant part of nuclear DNA. Little is known about the mechanisms that govern heterochromatic DNA stability. We show here that in the yeast Saccharomyces cerevisiae (i) DNA mismatch repair (MMR) is required for the maintenance of heterochromatic DNA stability, (ii) MutLα (Mlh1-Pms1 heterodimer), MutSα (Msh2-Msh6 heterodimer), MutSβ (Msh2-Msh3 heterodimer), and Exo1 are involved in MMR at heterochromatin, ... [more]

PLoS Genet. Oct. 01, 2017; 13(10);e1007074 [Pubmed: 29069084]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: mutation frequency (APO:0000198)

Additional Notes

  • mutation rate

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
REV3 EXO1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.9241BioGRID
222862
EXO1 REV3
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2342355
REV3 EXO1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
481367
EXO1 REV3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2342368
REV3 EXO1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2601048
EXO1 REV3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
265641
EXO1 REV3
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
239499

Curated By

  • BioGRID