INTS5
Gene Ontology Biological Process
Gene Ontology Molecular Function
PPP2R1A
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- RNA splicing [NAS]
- apoptotic process [TAS]
- ceramide metabolic process [NAS]
- chromosome segregation [IDA]
- fibroblast growth factor receptor signaling pathway [TAS]
- gene expression [TAS]
- inactivation of MAPK activity [NAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- mitotic nuclear envelope reassembly [TAS]
- negative regulation of cell growth [NAS]
- negative regulation of tyrosine phosphorylation of Stat3 protein [NAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- protein complex assembly [TAS]
- protein dephosphorylation [TAS]
- regulation of DNA replication [NAS]
- regulation of Wnt signaling pathway [NAS]
- regulation of cell adhesion [NAS]
- regulation of cell differentiation [NAS]
- regulation of growth [NAS]
- regulation of transcription, DNA-templated [NAS]
- response to organic substance [NAS]
- second-messenger-mediated signaling [NAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Positive Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Mapping the Genetic Landscape of Human Cells.
Seminal yeast studies have established the value of comprehensively mapping genetic interactions (GIs) for inferring gene function. Efforts in human cells using focused gene sets underscore the utility of this approach, but the feasibility of generating large-scale, diverse human GI maps remains unresolved. We developed a CRISPR interference platform for large-scale quantitative mapping of human GIs. We systematically perturbed 222,784 ... [more]
Quantitative Score
- 3.379843149 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- growth abnormality (HP:0001507)
- k-562 cell (BTO:0000664)
Additional Notes
- CRISPR GI screen
- Cell Line: K562 EFO:0002067/Jurkat EFO:0002796
- Experimental Setup: Timecourse
- GIST: A-phenotypic negative/positive genetic interaction
- Interactions in this CRISPR interference (CRISPRi) analysis were considered to be significant when GI <= -3 (negative genetic interaction) or GI >= 3 (positive genetic interaction).
- K562 cell line Replicate Average GI score = 3.379843149
- Library: CRISPRi v1
- Significance Threshold: (positive genetic interaction) 3
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| PPP2R1A INTS5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9886 | BioGRID | 3147935 | |
| INTS5 PPP2R1A | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
| PPP2R1A INTS5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
| PPP2R1A INTS5 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | - |
Curated By
- BioGRID