BAIT

SRS2

HPR5, DNA helicase SRS2, RADH1, RADH, L000000809, L000001578, YJL092W
DNA helicase and DNA-dependent ATPase; involved in DNA repair and checkpoint recovery, needed for proper timing of commitment to meiotic recombination and transition from Meiosis I to II; blocks trinucleotide repeat expansion; affects genome stability; disassembles Rad51p nucleoprotein filaments during meiotic recombination; functional homolog of human RTEL1
Saccharomyces cerevisiae (S288c)
PREY

TOP3

EDR1, DNA topoisomerase 3, L000002321, YLR234W
DNA Topoisomerase III; conserved protein that functions in a complex with Sgs1p and Rmi1p to relax single-stranded negatively-supercoiled DNA preferentially; DNA catenation/decatenation activity stimulated by RPA and Sgs1p-Top2p-Rmi1p; involved in telomere stability and regulation of mitotic recombination
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51.

Bronstein A, Gershon L, Grinberg G, Alonso-Perez E, Kupiec M

Homologous recombination (HR) is a mechanism that repairs a variety of DNA lesions. Under certain circumstances, however, HR can generate intermediates that can interfere with other cellular processes such as DNA transcription or replication. Cells have therefore developed pathways that abolish undesirable HR intermediates. The Saccharomyces cerevisiae yeast Srs2 helicase has a major role in one of these pathways. Srs2 ... [more]

MBio Jul. 17, 2018; 9(4); [Pubmed: 30018112]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TOP3 SRS2
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low/High-BioGRID
530734
TOP3 SRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.5774BioGRID
224570
SRS2 TOP3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3871BioGRID
2135892
SRS2 TOP3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
452238
TOP3 SRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
159025
TOP3 SRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
159032
SRS2 TOP3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
165969

Curated By

  • BioGRID