BAIT

ADR1

DNA-binding transcription factor ADR1, L000000050, YDR216W
Carbon source-responsive zinc-finger transcription factor; required for transcription of the glucose-repressed gene ADH2, of peroxisomal protein genes, and of genes required for ethanol, glycerol, and fatty acid utilization
Saccharomyces cerevisiae (S288c)
PREY

RPD3

MOF6, REC3, SDI2, SDS6, histone deacetylase RPD3, L000001696, L000001603, YNL330C
Histone deacetylase, component of both the Rpd3S and Rpd3L complexes; regulates transcription, silencing, autophagy and other processes by influencing chromatin remodeling; forms at least two different complexes which have distinct functions and members; Rpd3(L) recruitment to the subtelomeric region is regulated by interaction with the arginine methyltransferase, Hmt1p
GO Process (19)
GO Function (3)
GO Component (6)
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

A poised initiation complex is activated by SNF1.

Tachibana C, Biddick R, Law GL, Young ET

Snf1, the yeast AMP kinase homolog, is essential for derepression of glucose-repressed genes that are activated by Adr1. Although required for Adr1 DNA binding, the precise role of Snf1 is unknown. Deletion of histone deacetylase genes allowed constitutive promoter binding of Adr1 and Cat8, another activator of glucose-repressed genes. In repressed conditions, at the Adr1-and Cat8-dependent ADH2 promoter, partial chromatin ... [more]

J. Biol. Chem. Dec. 28, 2007; 282(52);37308-15 [Pubmed: 17974563]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: nutrient utilization (APO:0000096)

Additional Notes

  • an hda1 rpd3 reg1 adr1-c quadruple mutant relieves glucose repression

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPD3 ADR1
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low/High-BioGRID
799522

Curated By

  • BioGRID