BAIT

TOR2

DRR2, phosphatidylinositol kinase-related protein kinase TOR2, L000002323, YKL203C
PIK-related protein kinase and rapamycin target; subunit of TORC1, a complex that regulates growth in response to nutrients and TORC2, a complex that regulates cell-cycle dependent polarization of the actin cytoskeleton; involved in meiosis; TOR2 has a paralog, TOR1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

SLT2

BYC2, LYT2, MPK1, SLK2, mitogen-activated serine/threonine-protein kinase SLT2, L000001919, YHR030C
Serine/threonine MAP kinase; involved in regulating maintenance of cell wall integrity, cell cycle progression, and nuclear mRNA retention in heat shock; required for mitophagy and pexophagy; affects recruitment of mitochondria to phagophore assembly site (PAS); plays a role in adaptive response of cells to cold; regulated by the PKC1-mediated signaling pathway; SLT2 has a paralog, KDX1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

Publication

Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.

Aronova S, Wedaman K, Anderson S, Yates J, Powers T

The TOR kinases are regulators of growth in eukaryotic cells that assemble into two distinct protein complexes, TORC1 and TORC2, where TORC1 is inhibited by the antibiotic rapamycin. Present models favor a view wherein TORC1 regulates cell mass accumulation, and TORC2 regulates spatial aspects of growth, including organization of the actin cytoskeleton. Here, we demonstrate that in yeast both TORC1 ... [more]

Mol. Biol. Cell Aug. 01, 2007; 18(8);2779-94 [Pubmed: 17507646]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TOR2 SLT2
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
154790
TOR2 SLT2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2639BioGRID
393473
TOR2 SLT2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2857BioGRID
1997421
SLT2 TOR2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2112BioGRID
2047198
TOR2 SLT2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.264BioGRID
910193

Curated By

  • BioGRID