BAIT

CCC2

Cu(2+)-transporting P-type ATPase CCC2, L000000235, YDR270W
Cu(+2)-transporting P-type ATPase; required for export of copper from the cytosol into an extracytosolic compartment; has similarity to human proteins involved in Menkes and Wilsons diseases; protein abundance increases in response to DNA replication stress; affects TBSV model (+)RNA virus replication by regulating copper metabolism
GO Process (3)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

ATX1

copper metallochaperone ATX1, L000000155, YNL259C
Cytosolic copper metallochaperone; transports copper to the secretory vesicle copper transporter Ccc2p for eventual insertion into Fet3p, which is a multicopper oxidase required for high-affinity iron uptake
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Publication

Interaction of the two soluble metal-binding domains of yeast Ccc2 with copper(I)-Atx1.

Banci L, Bertini I, Chasapis CT, Rosato A, Tenori L

Yeast Ccc2 is a P-type ATPase responsible for transport of copper(I) from the cytosol to the trans-Golgi network. It possesses a soluble cytosolic N-terminal region containing two copper(I)-binding domains. Homologous eukaryotic copper-transporting ATPases have from one to six domains. We have expressed a fragment encompassing residues 1-150 of Ccc2, which corresponds to the two domains, and found that the second ... [more]

Biochem. Biophys. Res. Commun. Dec. 21, 2007; 364(3);645-9 [Pubmed: 17961510]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ATX1 CCC2
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
154150
ATX1 CCC2
Reconstituted Complex
Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Low-BioGRID
-
ATX1 CCC2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
353599
ATX1 CCC2
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-
ATX1 CCC2
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-

Curated By

  • BioGRID