BAIT

SEC14

PIT1, phosphatidylinositol/phosphatidylcholine transfer protein SEC14, L000001839, YMR079W
Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

CLA4

ERC10, serine/threonine protein kinase CLA4, L000000564, L000002643, YNL298W
Cdc42p-activated signal transducing kinase; member of the PAK (p21-activated kinase) family, along with Ste20p and Skm1p; involved in septin ring assembly, vacuole inheritance, cytokinesis, sterol uptake regulation; phosphorylates Cdc3p and Cdc10p; CLA4 has a paralog, SKM1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function.

Fairn GD, Curwin AJ, Stefan CJ, McMaster CR

The Saccharomyces cerevisiae phosphatidylcholine/phosphatidylinositol transfer protein Sec14p is required for Golgi apparatus-derived vesicular transport through coordinate regulation of phospholipid metabolism. Sec14p is normally essential. The essential requirement for SEC14 can be bypassed by inactivation of (i) the CDP-choline pathway for phosphatidylcholine synthesis or (ii) KES1, which encodes an oxysterol binding protein. A unique screen was used to determine genome-wide genetic ... [more]

Proc. Natl. Acad. Sci. U.S.A. Sep. 25, 2007; 104(39);15352-7 [Pubmed: 17881569]

Throughput

  • High Throughput

Ontology Terms

  • inviable (APO:0000112)

Additional Notes

  • An SGA screen was used to identify genes specifically required for viability of the query strain which was a sec14 cki1 double mutant.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC14 CLA4
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
258965

Curated By

  • BioGRID