MAPK1
Gene Ontology Biological Process
- ERBB signaling pathway [IDA]
- ERK1 and ERK2 cascade [IDA, TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- JAK-STAT cascade involved in growth hormone signaling pathway [TAS]
- MAPK cascade [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- Ras protein signal transduction [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- activation of MAPK activity [TAS]
- activation of MAPKK activity [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- caveolin-mediated endocytosis [TAS]
- chemotaxis [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IDA]
- peptidyl-threonine phosphorylation [ISS]
- platelet activation [TAS]
- positive regulation of peptidyl-threonine phosphorylation [IDA]
- regulation of Golgi inheritance [TAS]
- regulation of cytoskeleton organization [TAS]
- regulation of early endosome to late endosome transport [TAS]
- regulation of protein stability [ISS]
- regulation of sequence-specific DNA binding transcription factor activity [TAS]
- regulation of stress-activated MAPK cascade [TAS]
- response to epidermal growth factor [IDA]
- response to stress [TAS]
- signal transduction [TAS]
- small GTPase mediated signal transduction [TAS]
- stress-activated MAPK cascade [TAS]
- synaptic transmission [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CASP9
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- activation of cysteine-type endopeptidase activity involved in apoptotic process by cytochrome c [TAS]
- apoptotic process [TAS]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IDA]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- intrinsic apoptotic signaling pathway [TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [IMP]
- neurotrophin TRK receptor signaling pathway [TAS]
- phosphatidylinositol-mediated signaling [TAS]
- platelet formation [TAS]
- positive regulation of apoptotic process [TAS]
- regulation of apoptotic process [TAS]
- regulation of response to DNA damage stimulus [IMP]
- signal transduction in response to DNA damage [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- apoptosome [IDA]
- cytosol [IDA, TAS]
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK.
Many pro-apoptotic signals activate caspase-9, an initiator protease that activates caspase-3 and downstream caspases to initiate cellular destruction. However, survival signals can impinge on this pathway and suppress apoptosis. Activation of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) pathway is associated with protection of cells from apoptosis and inhibition of caspase-3 activation, although the targets are unknown. Here, we show that ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID