BAIT

DBP5

RAT8, ATP-dependent RNA helicase DBP5, L000003292, YOR046C
Cytoplasmic ATP-dependent RNA helicase of the DEAD-box family; involved in mRNA export from the nucleus, remodeling messenger ribonucleoprotein particles (mRNPs), with ATPase activity stimulated by Gle1p, IP6 and Nup159p; involved in translation termination along with Sup45p (eRF1); role in the cellular response to heat stress
Saccharomyces cerevisiae (S288c)
PREY

SIT4

PPH1, type 2A-related serine/threonine-protein phosphatase SIT4, L000001901, YDL047W
Type 2A-related serine-threonine phosphatase; functions in the G1/S transition of the mitotic cycle; regulator of COPII coat dephosphorylation; required for ER to Golgi traffic; interacts with Hrr25p kinase; cytoplasmic and nuclear protein that modulates functions mediated by Pkc1p including cell wall and actin cytoskeleton organization; similar to human PP6
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

A nuclear role for the DEAD-box protein Dbp5 in tRNA export.

Lari A, Arul Nambi Rajan A, Sandhu R, Reiter T, Montpetit R, Young BP, Loewen CJ, Montpetit B

Dbp5 is an essential DEAD-box protein that mediates nuclear mRNP export. Dbp5 also shuttles between nuclear and cytoplasmic compartments with reported roles in transcription, ribosomal subunit export, and translation; however, the mechanism(s) by which nucleocytoplasmic transport occurs and how Dbp5 specifically contributes to each of these processes remains unclear. Towards understanding the functions and transport of Dbp5 in Saccharomyces cerevisiae, ... [more]

Elife Aug. 27, 2019; 8(); [Pubmed: 31453808]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • SGA
  • dbp5-R423A

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DBP5 SIT4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
425637

Curated By

  • BioGRID